SiteGround
www.siteground.com
Web Hosting Services Crafted with Care!
SiteGround
www.siteground.com
Web Hosting Services Crafted with Care!
Genetics

Genetics (3)

Detection of Nucleic Acid Sequences of Malaria Parasites

Written by
Published in Genetics
Tuesday, 06 September 2016 21:15
Malaria parasites can be detected by identification of specific nucleic acid sequences in their DNA. Methods based on polymerase chain reaction (PCR) have been developed for identification of DNA of malaria parasite. Species diagnosis is also possible. PCR-based methods can detect very low levels of parasites in blood (< 5 parasites/μl of blood) with very high sensitivity and specificity.
 
Molecular methods can be useful in the diagnosis of malaria, in following response to treatment, in epidemiological surveys, and for screening of blood donors. They can also be used as a standard to judge other methods of malaria diagnosis. However, these methods cannot be routinely applied because of the high cost, need for special equipments and materials, and lengthy procedure (24 hours). Presently they can be used as a research tool in malaria control programs, and to carry out quality control checks on microscopic diagnosis.
 
Useful Links:

Bacterial Genetics

Written by
Published in Bacterial Genetics
Saturday, 23 April 2016 13:02
Bacterial genetics is the subfield of genetics devoted to the study of bacteria. Bacterial genetics are subtly different from eukaryotic genetics, however bacteria still serve as a good model for animal genetic studies. One of the major distinctions between bacterial and eukaryotic genetics stems from the bacteria's lack of membrane-bound organelles (this is true of all prokaryotes. While it is a fact that there are prokaryotic organelles, they are never bound by a lipid membrane, but by a shell of proteins), necessitating protein synthesis occur in the cytoplasm.
 
Like other organisms, bacteria also breed true and maintain their characteristics from generation to generation, yet at same time, exhibit variations in particular properties in a small proportion of their progeny. Though heritability and variations in bacteria had been noticed from the early days of bacteriology, it was not realised then that bacteria too obey the laws of genetics. Even the existence of a bacterial nucleus was a subject of controversy. The differences in morphology and other properties were attributed by Nageli in 1877, to bacterial pleomorphism, which postulated the existence of a single, a few species of bacteria, which possessed a protein capacity for a variation. With the development and application of precise methods of pure culture, it became apparent that different types of bacteria retained constant form and function through successive generations. This led to the concept of monomorphism.

Genetics

Written by
Published in Genetics
Saturday, 23 April 2016 12:54
Genetics is the study of genes, heredity, and genetic variation in living organisms. It is generally considered a field of biology, but it intersects frequently with many of the life sciences and is strongly linked with the study of information systems.
 
The father of genetics is Gregor Mendel, a late 19th-century scientist and Augustinian friar. Mendel studied 'trait inheritance', patterns in the way traits were handed down from parents to offspring. He observed that organisms (pea plants) inherit traits by way of discrete "units of inheritance". This term, still used today, is a somewhat ambiguous definition of what is referred to as a gene.
 
Trait inheritance and molecular inheritance mechanisms of genes are still a primary principle of genetics in the 21st century, but modern genetics has expanded beyond inheritance to studying the function and behavior of genes. Gene structure and function, variation, and distribution are studied within the context of the cell, the organism (e.g. dominance) and within the context of a population. Genetics has given rise to a number of sub-fields including epigenetics and population genetics. Organisms studied within the broad field span the domain of life, including bacteria, plants, animals, and humans.
 
Genetic processes work in combination with an organism's environment and experiences to influence development and behavior, often referred to as nature versus nurture. The intra- or extra-cellular environment of a cell or organism may switch gene transcription on or off. A classic example is two seeds of genetically identical corn, one placed in a temperate climate and one in an arid climate. While the average height of the two corn stalks may be genetically determined to be equal, the one in the arid climate only grows to half the height of the one in the temperate climate, due to lack of water and nutrients in its environment.
 
History
The observation that living things inherit traits from their parents has been used since prehistoric times to improve crop plants and animals through selective breeding. The modern science of genetics, seeking to understand this process, began with the work of Gregor Mendel in the mid-19th century.
 
Although the science of genetics began with the applied and theoretical work of Mendel, other theories of inheritance preceded his work. A popular theory during Mendel's time was the concept of blending inheritance: the idea that individuals inherit a smooth blend of traits from their parents. Mendel's work provided examples where traits were definitely not blended after hybridization, showing that traits are produced by combinations of distinct genes rather than a continuous blend. Blending of traits in the progeny is now explained by the action of multiple genes with quantitative effects. Another theory that had some support at that time was the inheritance of acquired characteristics: the belief that individuals inherit traits strengthened by their parents. This theory (commonly associated with Jean-Baptiste Lamarck) is now known to be wrong—the experiences of individuals do not affect the genes they pass to their children, although evidence in the field of epigenetics has revived some aspects of Lamarck's theory. Other theories included the pangenesis of Charles Darwin (which had both acquired and inherited aspects) and Francis Galton's reformulation of pangenesis as both particulate and inherited.

Useful Sites

  • NCBI

    National Center for Biotechnology Information
  • LTO

    Lab Tests Online® by AACC
  • ASCP

    American Society for Clinical Pathology
  • ASM

    American Society for Microbiology
  • The Medical Library®

    Project of BioScience.pk

Sponsored Links

Daily Science
www.bioscience.pk
The Science News app that will get you to the breaking news.
ASH Job Center
www.jobcenter.hematology.org
By American Society of Hemotology
Online Digital Library
www.bioscience.pk
Free Downloads Medical Books.
Advertisement

Sponsored Links

ASH Job Center
www.jobcenter.hematology.org
By American Society of Hemotology
SiteGround
www.siteground.com
Web Hosting Services Crafted with Care!
BioScience.pk App
www.bioscience.pk
Put vital info into the palm of your hand.
Online Digital Library
www.bioscience.pk
Free Downloads Medical Books.
Daily Science
www.bioscience.pk
The Science News app that will get you to the breaking news.
Make money online!
www.adf.ly
Use a URL shortener service that pays.

Connect With Us

Contact Us

All comments and suggestions about this web site are very welcome and a valuable source of information for us. Thanks!

Tel: +(92) 302 970 8985-6

Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Website: https://www.bioscience.pk

Our Sponsors

Findeen.com

By using BioScience.pk you agree to our use of cookies to enhance your experience on this website.