USES OF ANTICOAGULANTS FOR HEMOTOLOGICAL INVESTIGATIONS

Published in Hemotology
Saturday, 22 July 2017 10:04
Anticoagulants used for hematological investigations are ethylene diamine tetra-acetic acid (EDTA), heparin, double oxalate, and trisodium citrate (Table 791.1).
 
Table 791.1 Salient features of three main anticoagulants used in the hematology laboratory
Salient features of three main anticoagulants used in the hematology laboratory
 
Ethylene Diamine Tetra-acetic Acid (EDTA)
 
Changes occurring due to prolonged storage of blood in EDTAThis is also called as Sequestrene or Versene. This is the recommended anticoagulant for routine hematological investigations. However, it cannot be used for coagulation studies. Disodium and dipotassium salts of EDTA are in common use. International Committee for Standardization in Hematology recommends dipotassium EDTA since it is more soluble. It is used in a concentration of 1.5 mg/ml of blood. Dried form of anticoagulant is used as it avoids dilution of sample. Its mechanism of action is chelation of calcium. Proportion of anticoagulant to blood should be maintained. EDTA in excess of 2mg/ml causes shrinkage of and degenerative changes in red and white blood cells, decrease in hematocrit, and increase in mean corpuscular hemoglobin concentration. Excess EDTA also causess welling and fragmentation of platelets, which leads to erroneously high platelet counts. Prolonged storage of blood in EDTA anticoagulant leads to alterations as shown in Figure 791.1 and Box 791.1. EDTA is used for estimation of hemoglobin, hematocrit, cell counts, making blood films, sickling test, reticulocyte count, and hemoglobin electrophoresis.
 
Preparation
 
Dipotassium EDTA 20 gm
Distilled water 200 ml
 
Mix to dissolve. Place 0.04 ml of this solution in a bottle for 2.5 ml of blood. Anticoagulant should be dried on a warm bench or in an incubator at 37°C before use. For routine hematological investigations, 2-3 ml of EDTA blood is required.
 
Changes in blood cell morphology crenation of red cells separation of nuclear lobes of neutrophil vacuoles in cytoplasm and irregular lobulation of monocyte and lymphocyte nuclei due to storage of blood in EDTA anti
Figure 791.1 Changes in blood cell morphology (crenation of red cells, separation of nuclear lobes of neutrophil, vacuoles in cytoplasm, and irregular lobulation of monocyte and lymphocyte nuclei) due to storage of blood in EDTA anticoagulant for prolonged time
 
Heparin
 
Heparin prevents coagulation by enhancing the activity of anti-thrombin III (AT III). AT III inhibits thrombin and some other coagulation factors. It is used in the proportion of 15-20 IU/ ml of blood. Sodium, lithium, or ammonium salt of heparin is used. Heparin should not be used for total leukocyte count (since it causes leukocyte clumping) and for making of blood films (since it imparts a blue background). It is used for osmotic fragility test (since it does not alter the size of cells) and for immunophenotyping.
 
Double Oxalate (Wintrobe Mixture)
 
This consists of ammonium oxalate and potassium oxalate in 3:2 proportion. This combination is used to balance the swelling of red cells caused by ammonium oxalate and shrinkage caused by potassium oxalate. Mechanism of anticoagulant action is removal of calcium. It is used for routine hematological tests and for estimation of erythrocyte sedimentation rate by Wintrobe method. As it causes crenation of red cells and morphologic alteration in white blood cells, it cannot be used for making of blood films.
 
Preparation
 
Ammonium oxalate 1.2 gm
Potassium oxalate 0.8 gm
Distilled water upto 100 ml
 
Place 0.5 ml of this solution in a bottle for 5 ml of blood. Anticoagulant should be dried in an incubator at 37°C or on a warm bench before use.
 
Trisodium Citrate (3.2%)
 
This is the anticoagulant of choice for coagulation studies and for estimation of erythrocyte sedimentation rate by Westergren method.
 
Preparation
 
Trisodium citrate 3.2 gm
Distilled water upto 100 ml
 
Mix well to dissolve. Store in a refrigerator at 2-8°C.
 
Use 1:9 (anticoagulant: blood) proportion for coagulation studies; for ESR, 1:4 proportion is recommended.
 
ESR should be measured within 4 hours of collection of blood, while coagulation studies should be performed within 2 hours.
 
Further Reading:
 
Advertisement

Useful Sites

  • NCBI

    National Center for Biotechnology Information
  • LTO

    Lab Tests Online® by AACC
  • ASCP

    American Society for Clinical Pathology
  • ASM

    American Society for Microbiology
  • The Medical Library®

    Project of BioScience.pk
Advertisement

Connect With Us

Contact Us

All comments and suggestions about this web site are very welcome and a valuable source of information for us. Thanks!

Tel: +(92) 302 970 8985-6

Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Website: https://www.bioscience.pk



This website is certified by Health On the Net Foundation. Click to verify. This site complies with the HONcode standard for trustworthy health information:
verify here.

Our Sponsors

InsightGadgets.comPathLabStudyTheMedicalLibrary.orgThe Physio ClubB2BPakistan.com

By using BioScience.pk you agree to our use of cookies to enhance your experience on this website.