FEMALE INFERTILITY: CAUSES AND INVESTIGATIONS

Published in Clinical Pathology
Friday, 22 September 2017 13:37
The ovaries are the sites of production of female gametes or ova by the process of oogenesis. The ova are released by the process of ovulation in a cyclical manner at regular intervals. Ovary contains numerous follicles that contain ova in various stages of development. During each menstrual cycle, up to 20 primordial follicles are activated for maturation; however, only one follicle becomes fully mature; this dominant follicle ruptures to release the secondary oocyte from the ovary. Maturation of the follicle is stimulated by follicle stimulating hormone (FSH) secreted by anterior pituitary (Figure 862.1). Maturing follicle secretes estrogen that causes proliferation of endometrium of the uterus (proliferative phase). Follicular cells also secrete inhibin which regulates release of FSH by the anterior pituitary. Fall in FSH level is followed by secretion of luteinizing hormone (LH) by the anterior pituitary (LH surge). This causes follicle to rupture and the ovum is expelled into the peritoneal cavity near the fimbrial end of the fallopian tube. The fallopian tubes conduct ova from the ovaries to the uterus. Fertilization of ovum by the sperm occurs in the fallopian tube.
 
Figure 862.1 The hypothalamus pituitary ovarian axis
Figure 862.1 The hypothalamus-pituitary-ovarian axis 
 
The ovum consists of the secondary oocyte, zona pellucida and corona radiata. The ruptured follicle in the ovary collapses and fills with blood clot (corpus luteum). LH converts granulose cells in the follicle to lutein cells which begin to secrete progesterone. Progesterone stimulates secretion from the endometrial glands (secretory phase) that were earlier under the influence of estrogen. Rising progesterone levels inhibit LH production from the anterior pituitary. Without LH, the corpus luteum regresses and becomes functionless corpus albicans. After regression of corpus luteum, production of estrogen and progesterone stops and endometrium collapses, causing onset of menstruation. If the ovum is fertilized and implanted in the uterine wall, human chorionic gonadotropin (hCG) is secreted by the developing placenta into the maternal circulation. Human chorionic gonadotropin maintains the corpus luteum for secetion of estrogen and progesterone till 12th week of pregnancy. After 12th week, corpus luteum regresses to corpus albicans and the function of synthesis of estrogen and progesterone is taken over by placenta till parturition.
 
The average duration of the normal menstrual cycle is 28 days. Ovulation occurs around 14th day of the cycle. The time interval between ovulation and menstruation is called as luteal phase and is fairly constant (14 days) (Figure 862.2).
 
Figure 862.2 Normal menstrual cycle
Figure 862.2 Normal menstrual cycle
 
Causes of Female Infertility
 
Causes of female infertility are shown in Table 862.1.
 
Table 862.1 Causes of female infertility
1. Hypothalamic-pituitary dysfunction:
  • Hypothalamic causes
    – Excessive exercise
    – Excess stress
    – Low weight
    – Kallman’s syndrome
    Idiopathic
  • Pituitary causes
    – Hyperprolactinemia
    Hypopituitarism (Sheehan’s syndrome, Simmond’s disease)
    – Craniopharyngioma
    – Cerebral irradiation
 2. Ovarian dysfunction:
  • Polycystic ovarian disease (Stein-Leventhal syndrome)
  • Luteinized unruptured follicle
  • Turner’s syndrome
  • Radiation or chemotherapy
  • Surgical removal of ovaries
  • Idiopathic
 3. Dysfunction in passages:
  • Fallopian tubes
    Infections: Tuberculosis, gonorrhea, Chlamydia
    – Previous surgery (e.g. laparotomy)
    – Tubectomy
    Congenital hypoplasia, non-canalization
    Endometriosis
  • Uterus
    – Uterine malformations
    – Asherman’s syndrome
    – Tuberculous endometritis
    Fibroid
  • Cervix: Sperm antibodies
  • Vagina: Septum
 4. Dysfunction of sexual act: Dyspareunia
 
Investigations
 
Evaluation of female infertility is shown in Figure 862.3.
 
Figure 862.3 Evaluation of female infertility
Figure 862.3 Evaluation of female infertility. FSH: Follicle stimulating hormone; LH: Luteinizing hormone; DHEA-S: Dihydroepiandrosterone; TSH: Thyroid stimulating hormone; ↑ : Increased; ↓ : Decreased
 
Tests for Ovulation
 
Most common cause of female infertility is anovulation.
 
  1. Regular cycles, mastalgia, and laparoscopic direct visualization of corpus luteum indicate ovulatory cycles. Anovulatory cycles are clinically characterized by amenorrhea, oligomenorrhea, or irregular menstruation. However, apparently regular cycles may be associated with anovulation.
  2. Endometrial biopsy: Endometrial biopsy is done during premenstrual period (21st-23rd day of the cycle). The secretory endometrium during the later half of the cycle is an evidence of ovulation.
  3. Ultrasonography (USG): Serial ultrasonography is done from 10th day of the cycle and the size of the dominant follicle is measured. Size >18 mm is indicative of imminent ovulation. Collapse of the follicle with presence of few ml of fluid in the pouch of Douglas is suggestive of ovulation. USG also is helpful for treatment (i.e. timing of coitus or of intrauterine insemination) and diagnosis of luteinized unruptured follicle (absence of collapse of dominant follicle). Transvaginal USG is more sensitive than abdominal USG.
  4. Basal body temperature (BBT): Patient takes her oral temperature at the same time every morning before arising. BBT falls by about 0.5°F at the time of ovulation. During the second (progestational) half of the cycle, temperature is slightly raised above the preovulatory level (rise of 0.5° to 1°F). This is due to the slight pyrogenic action of progesterone and is therefore presumptive evidence of functional corpus luteum.
  5. Cervical mucus study:
    Fern test: During estrogenic phase, a characteristic pattern of fern formation is seen when cervical mucus is spread on a glass slide (Figure 862.4). This ferning disappears after the 21st day of the cycle. If previously observed, its disappearance is presumptive evidence of corpus luteum activity.
    Spinnbarkeit test: Cervical mucus is elastic and withstands stretching upto a distance of over 10 cm. This phenomenon is called Spinnbarkeit or the thread test for the estrogen activity. During the secretory phase, viscosity of the cervical mucus increases and it gets fractured when stretched. This change in cervical mucus is evidence of ovulation.
  6. Vaginal cytology: Karyopyknotic index (KI) is high during estrogenic phase, while it becomes low in secretory phase. This refers to percentage of super-ficial squamous cells with pyknotic nuclei to all mature squamous cells in a lateral vaginal wall smear. Usually minimum of 300 cells are evaluated. The peak KI usually corresponds with time of ovulation and may reach upto 50 to 85.
  7. Estimation of progesterone in mid-luteal phase (day 21 or 7 days before expected menstruation): Progesterone level > 10 nmol/L is a reliable evidence of ovulation if cycles are regular (Figure 862.5). A mistimed sample is a common cause of abnormal result.
 
Figure 862.4 Ferning of cervical mucosa
Figure 862.4 Ferning of cervical mucosa
 
Figure 862.5 Serum progesterone during normal menstrual cycle
Figure 862.5 Serum progesterone during normal menstrual cycle
 
Tests to Determine the Cause of Anovulation
 
  1. Measurement of LH, FSH, and estradiol during days 2 to 6: All values are low in hypogonadotropic hypogonadism (hypothalamic or pituitary failure).
  2. Measurement of TSH, prolactin, and testosterone if cycles are irregular or absent:
    Increased TSH: Hypothyroidism
    Increased prolactin: Pituitary adenoma
    Increased testosterone: Polycystic ovarian disease (PCOD), congenital adrenal hyperplasia (To differentiate PCOD from congenital adrenal hyperplasia, ultrasound and estimation of dihydroepiandrosterone or DHEA are done).
  3. Transvaginal ultrasonography: This is done for detection of PCOD.
 
Investigations to Assess Tubal and Uterine Status
 
  1. Infectious disease: These tests include endometrial biopsy for tuberculosis and test for chlamydial IgG antibodies for tubal factor in infertility.
  2. Hysterosalpingography (HSG): HSG is a radiological contrast study for investigation of the shape of the uterine cavity and for blockage of fallopian tubes (Figure 862.6). A catheter is introduced into the cervical canal and a radiocontrast dye is injected into the uterine cavity. A real time X-ray imaging is carried out to observe the flow of the dye into the uterine cavity, tubes, and spillage into the uterine cavity.
  3. Hysterosalpingo-contrast sonography: A catheter is introduced into the cervical canal and an echocontrast fluid is introduced into the uterine cavity. Shape of the uterine cavity, filling of fallopian tubes, and spillage of contrast fluid are noted. In addition, ultrasound scan of the pelvis provides information about any fibroids or polycystic ovarian disease.
  4. Laparoscopy and dye hydrotubation test with hysteroscopy: In this test, a cannula is inserted into the cervix and methylene blue dye is introduced into the uterine cavity. If tubes are patent, spillage of the dye is observed from the ends of both tubes. This technique also allows visualization of pelvic organs, endometriosis, and pelvic adhesions. If required, endometriosis and tubal blockage can be treated during the procedure.
 
Possible pregnancy and active pelvic or vaginal infection are contraindications to tubal patency tests.
 
Figure 862.6 Hysterosalpingography
Figure 862.6 Hysterosalpingography

MALE INFERTILITY: CAUSES AND INVESTIGATIONS

Published in Clinical Pathology
Friday, 22 September 2017 00:03
The male reproductive system consists of testes (paired organs located in the scrotal sac that produce spermatozoa and secrete testosterone), a paired system of ducts comprising of epididymis, vasa deferentia, and ejaculatory ducts (collect, store, and conduct spermatozoa), paired seminal vesicles and a single prostate gland (produce nutritive and lubricating seminal fluid), bulbourethral glands of Cowper (secrete lubricating mucus), and penis (organ of copulation).
 
The hypothalamus secretes gonadotropin releasing hormone (GnRH) that regulates the secretion of the two gonadotropins from the anterior pituitary: luteinizing hormone (LH) and follicle stimulating hormone (FSH) (Figure 861.1). Luteinizing hormone primarily stimulates the production and secretion of testosterone from Leydig cells located in the interstitial tissue of the testes. Testosterone stimulates spermatogenesis, and plays a role in the development of secondary sexual characters. Testosterone needs to be converted to an important steroidal metabolite, dihydrotestosterone within cells to perform most of its androgenic functions. Testosterone inhibits LH secretion by negative feedback. Follicle stimulating hormone acts on Sertoli cells of seminiferous tubules to regulate the normal maturation of the sperms. Sertoli cells produce inhibin that controls FSH secretion by negative feedback.
 
Figure 861.1 Hypothalamus-pituitary-testis axis. + indicates stimulation; – indicates negative feedback
Figure 861.1 Hypothalamus-pituitary-testis axis. + indicates stimulation; – indicates negative feedback
 
During sexual intercourse, semen is deposited into the vagina. Liquefaction of semen occurs within 20-30 minutes due to proteolytic enzymes of prostatic fluid. For fertilization to occur in vivo, the sperm must undergo capacitation and acrosome reaction. Capacitation refers to physiologic changes in sperms that occur during their passage through the cervix of the female genital tract. With capacitation, the sperm acquires (i) ability to undergo acrosome reaction, (ii) ability to bind to zona pellucida, and (iii) hypermotility. Sperm then travels through the cervix and uterus up to the fallopian tube. Binding of sperm to zona pellucida induces acrosomal reaction (breakdown of outer plasma membrane by enzymes of acrosome and its fusion with outer acrosomal membrane, i.e. loss of acrosome). This is necessary for fusion of sperm and oocyte membranes. Acrosomal reaction and binding of sperm and ovum surface proteins is followed by penetration of zona pellucida of ovum by the sperm. Following penetration by sperm, hardening of zona pellucida occurs that inhibits penetration by additional sperms. A sperm penetrates and fertilizes the egg in the ampullary portion of the fallopian tube (Figure 861.2).
 
Figure 861.2 Steps before and after fertilization of ovum
Figure 861.2 Steps before and after fertilization of ovum
 
Causes of Male Infertility
 
Causes of male infertility are listed in Table 861.1.
 
Table 861.1 Causes of male infertility 
2. Hypothalamic-pituitary dysfunction (hypogonadotropic hypogonadism)
3. Testicular dysfunction:
  • Radiation, cytotoxic drugs, antihypertensives, antidepressants
  • General factors like stress, emotional factors, drugs like marijuana, anabolic steroids, and cocaine, alcoholism, heavy smoking, undernutrition
  • Mumps orchitis after puberty
  • Varicocele (dilatation of pampiniform plexus of scrotal veins)
  • Undescended testes (cryptorchidism)
  • Endocrine disorders like diabetes mellitus, thyroid dysfunction
  • Genetic disorders: Klinefelter’s syndrome, microdeletions in Y chromosome, autosomal Robertsonian translocation, immotile cilia syndrome (Kartagener’s syndrome), cystic fibrosis, androgen receptor gene defect
4. Dysfunction of passages and accessory sex glands:
 5. Dysfunction of sexual act:
  • Defects in ejaculation: retrograde (semen is pumped backwards in to the bladder), premature, or absent
  • Hypospadias
 
Investigations of Male Infertility
 
  1. History: This includes type of lifestyle (heavy smoking, alcoholism), sexual practice, erectile dysfunction, ejaculation, sexually transmitted diseases, surgery in genital area, drugs, and any systemic illness.
  2. Physical examination: Examination of reproductive system should includes testicular size, undescended testes, hypospadias, scrotal abnormalities (like varicocele), body hair, and facial hair. Varicocele can occur bilaterally and is the most common surgically removable abnormality causing male infertility.
  3. Semen analysis: See article Semen Analysis. Evaluation of azoospermia is shown in Figure 861.3. Evaluation of low semen volume is shown in Figure 861.4.
  4. Chromosomal analysis: This can reveal Klinefelter’s syndrome (e.g. XXY karyotype) (Figure 861.5), deletion in Y chromosome, and autosomal Robertsonian translocation. It is necessary to screen for cystic fibrosis carrier state if bilateral congenital absence of vas deferens is present.
  5. Hormonal studies: This includes measurement of FSH, LH, and testosterone to detect hormonal abnormalities causing testicular failure (Table 861.2).
  6. Testicular biopsy: Testicular biopsy is indicated when differentiation between obstructive and non-obstructive azoospermia is not evident (i.e. normal FSH and normal testicular volume).
 
Table 861.2 Interpretation of hormonal studies in male infertility 
Follicle stimulating hormone Luteinizing hormone Testosterone Interpretation
Low Low Low Hypogonadotropic hypogonadism (Hypothalamic or pituitary disorder)
High High Low Hypergonadotropic hypogonadism (Testicular disorder)
Normal Normal Normal Obstruction of passages, dysfunction of accessory glands
 
Figure 861.3 Evaluation of azoospermia
Figure 861.3 Evaluation of azoospermia. FSH: Follicle stimulating hormone; LH: Luteinizing hormone
 
Figure 861.4 Evaluation of low semen volume
Figure 861.4 Evaluation of low semen volume
 
Figure 861.5 Karyotype in Klinefelter's Syndrome
 Figure 861.5 Karyotype in Klinefelter’s syndrome (47, XXY)
 
Common initial investigations for diagnosis of cause of infertility are listed below.
 

SEMEN ANALYSIS FOR INVESTIGATION OF INFERTILITY

Published in Clinical Pathology
Tuesday, 15 August 2017 23:54
 Box 835.1 Contributions to semen volume
 
• Testes and epididymis: 10%
• Seminal vesicles: 50%
• Prostate: 40%
• Cowper’s glands: Small volume
Semen (or seminal fluid) is a fluid that is emitted from the male genital tract and contains sperms that are capable of fertilizing female ova. Structures involved in production of semen are (Box 835.1):
 
  • Testes: Male gametes or spermatozoa (sperms) are produced by testes; constitute 2-5% of semen volume.
  • Epididymis: After emerging from the testes, sperms are stored in the epididymis where they mature; potassium, sodium, and glycerylphosphorylcholine (an energy source for sperms) are secreted by epididymis.
  • Vas deferens: Sperms travel through the vas deferens to the ampulla which is another storage area. Ampulla secretes ergothioneine (a yellowish fluid that reduces chemicals) and fructose (source of nutrition for sperms).
  • Seminal vesicles: During ejaculation, nutritive and lubricating fluids secreted by seminal vesicles and prostate are added. Fluid secreted by seminal vesicles consists of fructose (energy source for sperms), amino acids, citric acid, phosphorous, potassium, and prostaglandins. Seminal vesicles contribute 50% to semen volume.
  • Prostate: Prostatic secretions comprise about 40% of semen volume and consist of citric acid, acid phosphatase, calcium, sodium, zinc, potassium, proteolytic enzymes, and fibrolysin.
  • Bulbourethral glands of Cowper secrete mucus.
 
Normal values for semen analysis are shown in Tables 835.1 and 835.2.
 
Table 835.1 Normal values of semen analysis (World Health Organization, 1999)
Test Result
1. Volume ≥2 ml
2. pH 7.2 to 8.0
3. Sperm concentration ≥20 million/ml
4. Total sperm count per ejaculate ≥40 million
5. Morphology ≥30% sperms with normal morphology
6. Vitality ≥75% live
7. White blood cells <1 million/ml
8. Motility within 1 hour of ejaculation  
    • Class A ≥25% rapidly progressive
    • Class A and B ≥50% progressive
9. Mixed antiglobuiln reaction (MAR) test <50% motile sperms with adherent particles
10. Immunobead test <50% motile sperms with adherent particles
 
Table 835.2 Biochemical variables of semen analysis (World Helath Organization, 1992)
 1. Total fructose (seminal vesicle marker) ≥13 μmol/ejaculate 
 2. Total zinc (Prostate marker)  ≥2.4 μmol/ejaculate
 3. Total acid phosphatase (Prostate marker)  ≥200U/ejaculate
 4. Total citric acid (Prostate marker)  ≥52 μmol/ejaculate
 5. α-glucosidase (Epididymis marker)  ≥20 mU/ejaculate
 6. Carnitine (Epididymis marker)  0.8-2.9 μmol/ejaculate
 
INDICATIONS FOR SEMEN ANALYSIS
 
Box 835.2 Tests done on seminal fluid
 
• Physical examination: Time to liquefaction, viscosity, volume, pH, color
• Microscopic examination: Sperm count, vitality, motility, morphology, and proportion of white cells
• Immunologic analysis: Antisperm antibodies (SpermMAR test, Immunobead test)
• Bacteriologic analysis: Detection of infection
• Biochemical analysis: Fructose, zinc, acid phosphatase, carnitine.
• Sperm function tests: Postcoital test, cervical mucus penetration test, Hamster egg penetration assay, hypoosmotic swelling of flagella, and computer-assisted semen analysis
Availability of semen for examination allows direct examination of male germ cells that is not possible with female germ cells. Semen analysis requires skill and should preferably be done in a specialized andrology laboratory.
 
  1. Investigation of infertility: Semen analysis is the first step in the investigation of infertility. About 30% cases of infertility are due to problem with males.
  2. To check the effectiveness of vasectomy by confirming absence of sperm.
  3. To support or disprove a denial of paternity on the grounds of sterility.
  4. To examine vaginal secretions or clothing stains for the presence of semen in medicolegal cases.
  5. For selection of donors for artificial insemination.
  6. For selection of assisted reproductive technology, e.g. in vitro fertilization, gamete intrafallopian transfer technique.
 
COLLECTION OF SEMEN FOR INVESTIGATION OF INFERTILITY
 
Semen specimen is collected after about 3 days of sexual abstinence. Longer period of abstinence reduces motility of sperms. If the period of abstinence is shorter than 3 days, sperm count is lower. The sample is obtained by masturbation, collected in a clean, dry, sterile, and leakproof wide-mouthed plastic container, and brought to the laboratory within 1 hour of collection. The entire ejaculate is collected, as the first portion is the most concentrated and contains the highest number of sperms. During transport to the laboratory, the specimen should be kept as close to body temperature as possible (i.e. by carrying it in an inside pocket). Ideally, the specimen should be obtained near the testing site in an adjoining room. Condom collection is not recommended as it contains spermicidal agent. Ejaculation after coitus interruptus leads to the loss of the first portion of the ejaculate that is most concentrated; therefore this method should not be used for collection. Two semen specimens should be examined that are collected 2-3 weeks apart; if results are significantly different additional samples are required.
 
Box 835.3 Semen analysis for initial investigation of infertility
 
• Volume
• pH
• Microscopic examination for (i) percentage of motile spermatozoa, (ii) sperm count, and (iii) sperm morphology
EXAMINATION OF SEMINAL FLUID
 
The tests that can be done on seminal fluid are shown in Box 835.2. Tests commonly done in infertility are shown in Box 835.3. The usual analysis consists of measurement of semen volume, sperm count, sperm motility, and sperm morphology.
 
Terminology in semen analysis is shown in Box 835.4.
 
EXAMINATION OF SEMEN TO CHECK THEEFFECTIVENESS OF VASECTOMY
 
 Box 835.4 Terminology in semen analysis

• Normozoospermia: All semen parameters normal
• Oligozoospermia: Sperm concentration <20 million/ml (mild to moderate: 5-20 million/ml; severe: <5 million/ml)
• Azoospermia: Absence of sperms in seminal fluid
• Aspermia: Absence of ejaculate
• Asthenozoospermia: Reduced sperm motility; <50% of sperms showing class (a) and class (b) type of motility OR <25% sperms showing class (a) type of motility.
• Teratozoospermia: Spermatozoa with reduced proportion of normal morphology (or increased proportion of abnormal forms)
• Leukocytospermia: >1 million white blood cells/ml of semen
• Oligoasthenoteratozoospermia: All sperm variables are abnormal
• Necrozoospermia: All sperms are non-motile or non-viable
The aim of post-vasectomy semen analysis is to detect the presence or absence of spermatozoa. The routine follow-up consists of semen analysis starting 12 weeks (or 15 ejaculations) after surgery. If two successive semen samples are negative for sperms, the semen is considered as free of sperm. A follow-up semen examination at 6 months is advocated by some to rule out spontaneous reconnection.
 
Further Reading:
 

SPERM FUNCTION TESTS OR FUNCTIONAL ASSAYS

Published in Clinical Pathology
Tuesday, 15 August 2017 01:44
These tests are available only in specialized andrology laboratories. The tests are not standardized thus making interpretation difficult. If used singly, a sperm function test may not be helpful in fertility assessment. They are more predictive if used in combination.
 
Postcoital (Sims-Huhner) Test
 
This is the examination of the cervical mucus after coitus and assesses the ability of the sperm to penetrate the cervical mucus. The quality of the cervical mucus varies during the menstrual cycle, becoming more abundant and fluid at the time of ovulation (due to effect of estrogen); this facilitates penetration of the mucus by the spermatozoa. Progesterone in the secretory phase increases viscosity of the mucus. Therefore cervical mucus testing is scheduled just before ovulation (determined by basal body temperature records or follicular sizing by ultrasonography). Postcoital test is the traditional method to detect the cervical factor in infertility. Cervical mucus is aspirated with a syringe shortly before the expected time of ovulation and 2-12 hours after intercourse. Gross and microscopic examinations are carried out to assess the quality of cervical mucus (elasticity and drying pattern) and to evaluate the number and motility of sperms (Box 834.1). If ≥ 10 motile sperms are observed the test is considered as normal. An abnormal test may result from: (a) poor quality of cervical mucus due to wrong judgment of ovulation, cervicitis or treatment with antioestrogens (e.g. Clomid), and (b) absence of motile sperms due to ineffective technique of coitus, lack of ejaculation, poor semen quality, use of coital lubricants that damage the sperm, or presence of antisperm antibodies. Antisperm antibodies cause immotile sperms, or agglutination or clumping of sperms; they may be present in either partner. If cervical factor is present, intrauterine insemination is the popular treatment. The value of the postcoital test is disputed in the medical literature.
 
Box 834.1 Interpretation of postcoital test
  • Normal: Sperms are normal in amount and moving forward in the mucus; mucus stretches atleast 2 inches (5 cm) and dries in a fern-like manner.
  • Abnormal: Absence of sperms or large number of sperms are dead or sperms are clumped; cervical mucus cannot stretch 2 inches (5 cm) or does not dry in a fern-like manner.
 
This test can be carried out if semen analysis is normal, and the female partner is ovulating and fallopian tubes are not blocked. It is also done if antisperm antibodies are suspected and male partner refuses semen analysis.
 
Cervical Mucus Penetration Test
 
In this test, greatest distance traveled by the sperm in seminal fluid placed and incubated in a capillary tube containing bovine mucus is measured. Majority of fertile men show score >30 mm, while most infertile men show scores <20 mm.
 
Hamster Egg Penetration Assay
 
Hamster oocytes are enzymatically treated to remove the outer layers (that inhibit cross-species fertilization). They are then incubated with sperms and observed for penetration rate. It can be reported as (a) Number of eggs penetrated (penetration rate <15% indicates low fertility), or as (b) Number of sperm penetrations per egg (Normal >5). This test detects sperm motility, binding to oocyte, and penetration of oocyte. There is a high incidence of false-negative results.
 
Hypo-osmotic Swelling of Flagella
 
This test assesses the functional integrity of the plasma membrane of the sperm by observing curling of flagella in hypo-osmotic conditions.
 
Computer-assisted Semen Analysis
 
Computer software measures various characteristics of the spermatozoa; however, its role in predicting fertility potential is not confirmed.

IMMUNOLOGIC ANALYSIS OF SEMEN FOR INVESTIGATION OF INFERTILITY

Published in Clinical Pathology
Tuesday, 15 August 2017 01:04
ANTISPERM ANTIBODIES
 
The role of antisperm antibodies in causation of male infertility is controversial. The immunological tests done on seminal fluid include mixed antiglobulin reaction (MAR test) and immunobead test.
 
The antibodies against sperms immobilize or kill them, thus preventing their passage through the cervix to the ovum. The antibodies can be tested in the serum, seminal fluid, or cervical mucus. If the antibodies are present bound to the head of the sperm, they will prevent the penetration of the egg by the sperm. If antibodies are bound to the tail of the sperm, they will retard motility.
 
a. SpermMAR™ test: This test can detect IgG and IgA antibodies against sperm surface in semen sample. In direct SpermMAR™ IgG test, a drop each of semen (fresh and unwashed), IgG-coated latex particles, and anti-human immunoglobulin are mixed together on a glass slide. At least 200 motile spermatozoa are examined. If the spermatozoa have antibodies on their surface, antihuman immunoglobulin will bind IgG-coated latex particles to IgG on the surface of the spermatozoa; this will cause attachment of latex particles to spermatozoa, and motile, swimming sperms with attached particles will be seen. If the spermatozoa do not have antibodies on their surface, they will be seen swimming without attached particles; the latex particles will show clumping due to binding of their IgG to antihuman immunoglobulin.
 
In direct SpermMAR™ IgA test, a drop each of fresh unwashed semen and of IgA-coated latex particles, are mixed on a glass slide. The latex particles will bind to spermatozoa if spermatozoa are coated with IgA antibodies.
 
In indirect SpermMAR™ tests, fluid without spermatozoa (e.g. serum) is tested for the presence of antisperm antibodies. First, antibodies are bound to donor spermatozoa which are then mixed with the fluid to be analyzed. These antibodies are then detected as described above for direct tests.

Atleast 200 motile spermatozoa should be counted. If >50% of spermatozoa show attached latex particles, immunological problem is likely.
 
b. Immunobead test: Antibodies bound to the surface of the spermatozoa can be detected by antibodies attached to immunobeads (plastic particles with attached anti-human immunoglobulin that may be either IgG, IgA, or IgM). Percentage of motile spermatozoa with attached two or more immunobeads are counted amongst 200 motile spermatozoa. Finding of >50% spermatozoa with attached beads is abnormal.

MICROSCOPIC EXAMINATION OF SEMEN FOR INVESTIGATION OF INFERTILITY

Published in Clinical Pathology
Monday, 14 August 2017 22:02
The most important test in semen analysis for infertility is microscopic examination of the semen.
 
SPERM MOTILITY
 
The first laboratory assessment of sperm function in a wet preparation is sperm motility (ability of the sperms to move). Sperm motility is essential for penetration of cervical mucus, traveling through the fallopian tube, and penetrating the ovum. Only those sperms having rapidly progressive motility are capable of penetrating ovum and fertilizing it.
 
Principle: All motile and non-motile sperms are counted in randomly chosen fields in a wet preparation under 40× objective. Result is expressed as a percentage of motile spermatozoa observed.
 
Method: A drop of semen is placed on a glass slide, covered with a coverslip that is then ringed with petroleum jelly to prevent dehydration, and examined under 40× objective. Atleast 200 spermatozoa are counted in several different microscopic fields. Result is expressed as a percentage of (a) rapidly progressive spermatozoa (moving fast forward in a straight line), (b) slowly progressive spermatozoa (slow linear or non-linear, i.e. crooked or curved movement), (c) non-progressive spermatozoa (movement of tails, but with no forward progress), and (d) immotile spermatozoa (no movement at all) (WHO critera). Sperms of grades (c) and (d) are considered to be poorly motile (asthenospermia). Normally, ≥ 25% of sperms show rapid progressive motility, or ≥ 50% of sperms show rapid progressive and slow progressive motility.
 
If the proportion of motile spermatozoa is < 50%, then proportion of viable sperms should be determined by examining an eosin preparation.
 
SPERM VIABILITY OR VITALITY
 
Principle: A cell with intact cell membrane (a vital or viable cell) will not take up the eosin Y and will not be stained, while a non-viable or dead cell will have damaged cell membrane, will take up the dye, and will be stained pink-red (Figure 832.1). Another stain (e.g. nigrosin) may  be used to stain the background material. The test is performed if motility is abnormal.
 
Figure 832.1 Eosin nigrosin stain
Figure 832.1 Eosin-nigrosin stain. Dead sperms are stained pink-red, while live sperms are stained white
 
Method
 
  1. Mix one drop of semen with 1 drop of eosin-nigrosin solution and incubate for 30 seconds.
  2. A smear is made from a drop placed on a glass slide.
  3. The smear is air-dried and examined under oilimmersion objective. White sperms are classified as live or viable, and red sperms are classified as dead or non-viable. At least 200 spermatozoa are examined.
  4. The result is expressed as a proportion of viable sperms against non-viable as an integer percentage.
 
Seventy-five percent or more of sperms are normally live or viable.
 
SPERM COUNT
 
Principle: The sperm count is done after liquefaction in a counting chamber following dilution and the total number of spermatozoa is reported in millions/ml (106/ml).
 
Method
 
  1. Semen is diluted 1:20 with sodium bicarbonateformalin diluting fluid (Take 1 ml liquefied semen in a graduated tube and fill with diluting fluid to 20 ml mark. Mix well).
  2. A coverslip is placed over the improved Neubauer counting chamber and the counting chamber is filled with the well-mixed diluted semen sample using a Pasteur pipette. The chamber is then placed in a humid box for 10-15 minutes for spermatozoa to settle.
  3. The chamber is placed on the microscope stage. Using the 20× or 40× objective and iris diaphragm lowered sufficiently to give sufficient contrast, number of spermatozoa is counted in 4 large corner squares. Spermatozoa whose heads are touching left and upper lines of the square should be considered as ‘belonging’ to that square.
  4. Sperm count per ml is calculated as follows:

    Sperm count =                Sperms counted × correction factor             × 1000
                              Number of squares counted × Volume of 1 square
                           = Sperms counted × 20 1000
                                        4 × 0.1
                           = Sperms counted × 50, 000

  5. Normal sperm count is ≥ 20 million/ml (i.e. ≥ 20 × 106/ml). Sperm count < 20 million/ml may be associated with infertility in males.
 
SPERM MORPHOLOGY
 
A smear is prepared by spreading a drop of seminal fluid on a glass slide, stained, and percentages of normal and abnormal forms of spermatozoa are counted. The staining techniques used are Papanicolaou, eosinnigrosin, hematoxylin-eosin, and Rose Bengal-toluidine blue stain. Atleast 200 spermatozoa should be counted under oil immersion. Percentages of normal and abnormal spermatozoa should be recorded.
 
Normal morphology: A spermatozoon consists of three main components: head, neck, and tail. Tail is further subdivided into midpiece, main (principle) piece, and end piece (Figure 832.2 and Box 832.1).
 
Figure 832.2 Morphology of spermatozoa
Figure 832.2 Morphology of spermatozoa
 
Head is pear-shaped. Most of the head is occupied by the nucleus which has condensed chromatin and few areas of dispersed chromatin (called nuclear vacuoles). The anterior 2/3rds of the nucleus is surrounded by acrosomal cap. Acrosomal cap is a flattened membranebound vesicle containing glycoproteins and enzymes. These enzymes are required for separation of cells of corona radiata and dissolution of zona pellucida of ovum during fertilization.
 
Neck is a very short segment that connects the head and the tail. Centriole in the neck gives rise to axoneme of the flagellum. Axoneme consists of 20 microtubules (arranged as a central pair surrounded by 9 peripheral doublets) and is surrounded by condensed fibrous rings.
 
Middle piece is the first part of the tail and consists of central axoneme surrounded by coarse longitudinal fibers. These are surrounded by elongated mitochondria that provide energy for movement of tail.
 
Principle or main piece constitutes most of the tail and is composed of axoneme that is surrounded by 9 coarse fibers. This central core is surrounded by many circularly arranged fibrous ribs.
 
Endpiece is the short tapering part composed of only axoneme.
 
Normally, > 30% of spermatozoa should show normal morphology (WHO, 1999). The defects in morphology that are associated with infertility in males include defective mid-piece (causes reduced motility), an incomplete or absent acrosome (causes inability to penetrate the ovum), and giant head (defective DNA condensation).
 
Box 832.1 Normal sperm morphology
• Total length of sperm: About 60 μ
• Total length of sperm: About 60 μ
• Head:
   – Length: 3-5 μ
   – Width: 2-3 μ
   – Thickness: 1.5 μ
• Neck: Length: 0.3 μ
• Middle piece:
   – Length: 3-5 μ
   – Width: 1.0 μ
• Principal piece:
   – Length: 40-50 μ
   – Width: 0.5 μ
• End piece: 4-6 μ
 
Abnormal morphology (Figure 832.3): WHO morphological classification of human spermatozoa (1999) is given below:
 
  1. Normal sperm
  2. Defects in head:
    • Large heads
    • Small heads
    • Tapered heads
    • Pyriform heads
    • Round heads
    • Amorphous heads
    • Vacuolated heads (> 20% of the head area occupied by vacuoles)
    • Small acrosomes (occupying < 40% of head area)
    • Double heads
  3. Defects in neck:
    • Bent neck and tail forming an angle >90° to the long axis of head
  4. Defects in middle piece:
    • Asymmetric insertion of midpiece into head
    • Thick or irregular midpiece
    • Abnormally thin midpiece
  5. Defects in tail:
    • Bent tails
    • Short tails
    • Coiled tails
    • Irregular tails
    • Multiple tails
    • Tails with irregular width
  6. Pin heads: Not to be counted
  7. Cytoplasmic droplets
    • > 1/3rd the size of the sperm head
  8. Precursor cells: Considered abnormal
 
Figure 832.3 Abnormal morphological sperm forms
Figure 832.3 Abnormal morphological sperm forms: (1) Normal sperm, (2) Large head, (3) Small head, (4) Tapered head, (5) Pyriform head, (6) Round head, (7) Amorphous head, (8) Vacuoles in head, (9) Round head without acrosome, (10) Double head, (11) Pin head, (12) Round head without acrosome and thick midpiece, (13) Coiled tail, and (14) Double tail

ROUND CELLS
 
Round cells on microscopic examination may be white blood cells or immature sperm cells. Special stain (peroxidase or Papanicolaou) is required to differentiate between them. White blood cells >1 million/ml indicate presence of infection. Presence of large number of immature sperm cells indicates spermatogenesis dysfunction at the testicular level.

BIOCHEMICAL ANALYSIS OF SEMEN FOR INVESTIGATION OF INFERTILITY

Published in Clinical Pathology
Monday, 14 August 2017 13:42
Biochemical markers (Table 831.1) can be measured in semen to test the secretions of accessory structures. These include fructose (seminal vesicles), zinc, citric acid or acid phosphatase (prostate), and α-glucosidase or carnitine (epididymis).
 
Table 831.1 Biochemical variables of semen analysis (World Helath Organization, 1992)
1. Total fructose (seminal vesicle marker) ≥13 μmol/ejaculate
2. Total zinc (Prostate marker) ≥2.4 μmol/ejaculate
3. Total acid phosphatase (Prostate marker) ≥200U/ejaculate
4. Total citric acid (Prostate marker) ≥52 μmol/ejaculate
5. α-glucosidase (Epididymis marker) ≥20 mU/ejaculate
6. Carnitine (Epididymis marker) 0.8-2.9 μmol/ejaculate
 
TEST FOR FRUCTOSE
 
Resorcinol method is used for detection of fructose. In this test, 5 ml of resorcinol reagent (50 mg resorcinol dissolved in 33 ml concentrated hydrochloric acid; dilute up to 100 ml with distilled water) is added to 0.5 ml of seminal fluid. The mixture is heated and brought to boil. If fructose is present, a red-colored precipitate is formed within 30 seconds.
 
Absence of fructose indicates obstruction proximal to seminal vesicles (obstructed or absent vas deferens) or a lack of seminal vesicles. In a case of azoospermia, if fructose is absent, it is due to the obstruction of ejaculatory ducts or absence of vas deferens, and if present, azoospermia is due to failure of testes to produce sperm.

PHYSICAL EXAMINATION OF SEMEN FOR INVESTIGATION OF INFERTILITY

Published in Clinical Pathology
Monday, 14 August 2017 13:04
Examination is carried out after liquefaction of semen that occurs usually within 20-30 minutes of ejaculation.
 
1. VISUAL APPEARANCE
 
Normal semen is viscous and opaque gray-white in appearance. After prolonged abstinence, it appears slightly yellow.
 
 
Immediately following ejaculation, normal semen is thick and viscous. It becomes liquefied within 30 minutes by the action of proteolytic enzymes secreted by prostate. If liquefaction does not occur within 60 minutes, it is abnormal. The viscosity of the sample is assessed by filling a pipette with semen and allowing it to flow back into the container. Normal semen will fall drop by drop. If droplets form ‘threads’ more than 2 cm long, then viscosity is increased. Increased semen viscosity affects sperm motility and leads to poor invasion of cervical mucus; it results from infection of seminal vesicles or prostate.
 
3. VOLUME
 
Volume of ejaculated semen sample should normally be > 2 ml. It is measured after the sample has liquefied. Volume < 2.0 ml is abnormal, and is associated with low sperm count.
 
4. pH
 
A drop of liquefied semen is spread on pH paper (of pH range 6.4-8.0) and pH is recorded after 30 seconds. Normal pH is 7.2 to 8.0 after 1 hour of ejaculation. The portion of semen contributed by seminal vesicles is basic, while portion from prostate is acidic. Low pH (< 7.0) with absence of sperms (azoospermia) suggests obstruction of ejaculatory ducts or absence of vas deferens. Low pH is usually associated with low semen volume (as most of the volume is supplied by seminal vesicles).
Advertisement

Useful Sites

  • NCBI

    National Center for Biotechnology Information
  • LTO

    Lab Tests Online® by AACC
  • ASCP

    American Society for Clinical Pathology
  • ASM

    American Society for Microbiology
  • The Medical Library®

    Project of BioScience.pk
Advertisement

Connect With Us

Contact Us

All comments and suggestions about this web site are very welcome and a valuable source of information for us. Thanks!

Tel: +(92) 302 970 8985-6

Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Website: https://www.bioscience.pk



This website is certified by Health On the Net Foundation. Click to verify. This site complies with the HONcode standard for trustworthy health information:
verify here.

Our Sponsors

InsightGadgets.comPathLabStudyTheMedicalLibrary.orgThe Physio ClubB2BPakistan.com

By using BioScience.pk you agree to our use of cookies to enhance your experience on this website.